Packing trees of unbounded degrees in random graphs (1607.07342v1)
Abstract: In this paper, we address the problem of packing large trees in $G_{n,p}$. In particular, we prove the following result. Suppose that $T_1, \dotsc, T_N$ are $n$-vertex trees, each of which has maximum degree at most $(np){1/6} / (\log n)6$. Then with high probability, one can find edge-disjoint copies of all the $T_i$ in the random graph $G_{n,p}$, provided that $p \geq (\log n){36}/n$ and $N \le (1-\varepsilon)np/2$ for a positive constant $\varepsilon$. Moreover, if each $T_i$ has at most $(1-\alpha)n$ vertices, for some positive $\alpha$, then the same result holds under the much weaker assumptions that $p \geq (\log n)2/(cn)$ and $\Delta(T_i) \leq c np / \log n$ for some~$c$ that depends only on $\alpha$ and $\varepsilon$. Our assumptions on maximum degrees of the trees are significantly weaker than those in all previously known approximate packing results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.