Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Tree Language Model (1607.07057v3)

Published 24 Jul 2016 in cs.CL

Abstract: In this paper we introduce Latent Tree LLM (LTLM), a novel approach to LLMing that encodes syntax and semantics of a given sentence as a tree of word roles. The learning phase iteratively updates the trees by moving nodes according to Gibbs sampling. We introduce two algorithms to infer a tree for a given sentence. The first one is based on Gibbs sampling. It is fast, but does not guarantee to find the most probable tree. The second one is based on dynamic programming. It is slower, but guarantees to find the most probable tree. We provide comparison of both algorithms. We combine LTLM with 4-gram Modified Kneser-Ney LLM via linear interpolation. Our experiments with English and Czech corpora show significant perplexity reductions (up to 46% for English and 49% for Czech) compared with standalone 4-gram Modified Kneser-Ney LLM.

Citations (1)

Summary

We haven't generated a summary for this paper yet.