Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Tracial stability for C*-algebras (1607.04470v2)

Published 15 Jul 2016 in math.OA and math.GR

Abstract: We consider tracial stability, which requires that tuples of elements of a C*-algebra with a trace that nearly satisfy the relation are close to tuples that actually satisfy the relation. Here both "near" and "close" are in terms of the associated 2-norm from the trace, e.g., the Hilbert-Schmidt norm for matrices. Precise definitions are stated in terms of liftings from tracial ultraproducts of C*-algebras. We completely characterize matricial tracial stability for nuclear C*-algebras in terms of certain approximation properties for traces. For non-nuclear $C{\ast}$-algebras we find new obstructions for stability by relating it to Voiculescu's free entropy dimension. We show that the class of C*-algebras that are stable with respect to tracial norms on real-rank-zero C*-algebras is closed under tensoring with commutative C*-algebras. We show that $C(X)$ is tracially stable with respect to tracial norms on all $C{\ast}$-algebras if and only if $X$ is approximately path-connected.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.