Papers
Topics
Authors
Recent
Search
2000 character limit reached

Incompressible immiscible multiphase flows in porous media: a variational approach

Published 14 Jul 2016 in math.AP and math.OC | (1607.04009v2)

Abstract: We describe the competitive motion of (N + 1) incompressible immiscible phases within a porous medium as the gradient flow of a singular energy in the space of non-negative measures with prescribed mass endowed with some tensorial Wasserstein distance. We show the convergence of the approximation obtained by a minimization schem`e a la [R. Jordan, D. Kinder-lehrer & F. Otto, SIAM J. Math. Anal, 29(1):1--17, 1998]. This allow to obtain a new existence result for a physically well-established system of PDEs consisting in the Darcy-Muskat law for each phase, N capillary pressure relations, and a constraint on the volume occupied by the fluid. Our study does not require the introduction of any global or complementary pressure.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.