Papers
Topics
Authors
Recent
Search
2000 character limit reached

An exact solution for the Hawking effect in a dispersive fluid

Published 13 Jul 2016 in gr-qc and cond-mat.quant-gas | (1607.03743v3)

Abstract: We consider the wave equation for sound in a moving fluid with a fourth-order anomalous dispersion relation. The velocity of the fluid is a linear function of position, giving two points in the flow where the fluid velocity matches the group velocity of low-frequency waves. We find the exact solution for wave propagation in the flow. The scattering shows amplification of classical waves, leading to spontaneous emission when the waves are quantized. In the dispersionless limit the system corresponds to a 1+1-dimensional black-hole or white-hole binary and there is a thermal spectrum of Hawking radiation from each horizon. Dispersion changes the scattering coefficients so that the quantum emission is no longer thermal. The scattering coefficients were previously obtained by Busch and Parentani in a study of dispersive fields in de Sitter space [Phys. Rev. D 86, 104033 (2012)]. Our results give further details of the wave propagation in this exactly solvable case, where our focus is on laboratory systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.