Papers
Topics
Authors
Recent
2000 character limit reached

DeepBinaryMask: Learning a Binary Mask for Video Compressive Sensing

Published 12 Jul 2016 in cs.CV and cs.LG | (1607.03343v2)

Abstract: In this paper, we propose a novel encoder-decoder neural network model referred to as DeepBinaryMask for video compressive sensing. In video compressive sensing one frame is acquired using a set of coded masks (sensing matrix) from which a number of video frames is reconstructed, equal to the number of coded masks. The proposed framework is an end-to-end model where the sensing matrix is trained along with the video reconstruction. The encoder learns the binary elements of the sensing matrix and the decoder is trained to recover the unknown video sequence. The reconstruction performance is found to improve when using the trained sensing mask from the network as compared to other mask designs such as random, across a wide variety of compressive sensing reconstruction algorithms. Finally, our analysis and discussion offers insights into understanding the characteristics of the trained mask designs that lead to the improved reconstruction quality.

Citations (71)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.