Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Local feature hierarchy for face recognition across pose and illumination (1607.03226v1)

Published 12 Jul 2016 in cs.CV

Abstract: Even though face recognition in frontal view and normal lighting condition works very well, the performance degenerates sharply in extreme conditions. Recently there are many work dealing with pose and illumination problems, respectively. However both the lighting and pose variation will always be encountered at the same time. Accordingly we propose an end-to-end face recognition method to deal with pose and illumination simultaneously based on convolutional networks where the discriminative nonlinear features that are invariant to pose and illumination are extracted. Normally the global structure for images taken in different views is quite diverse. Therefore we propose to use the 1*1 convolutional kernel to extract the local features. Furthermore the parallel multi-stream multi-layer 1*1 convolution network is developed to extract multi-hierarchy features. In the experiments we obtained the average face recognition rate of 96.9% on multiPIE dataset,which improves the state-of-the-art of face recognition across poses and illumination by 7.5%. Especially for profile-wise positions, the average recognition rate of our proposed network is 97.8%, which increases the state-of-the-art recognition rate by 19%.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.