Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction-Based Disentanglement for Pose-invariant Face Recognition (1702.03041v2)

Published 10 Feb 2017 in cs.CV

Abstract: Deep neural networks (DNNs) trained on large-scale datasets have recently achieved impressive improvements in face recognition. But a persistent challenge remains to develop methods capable of handling large pose variations that are relatively underrepresented in training data. This paper presents a method for learning a feature representation that is invariant to pose, without requiring extensive pose coverage in training data. We first propose to generate non-frontal views from a single frontal face, in order to increase the diversity of training data while preserving accurate facial details that are critical for identity discrimination. Our next contribution is to seek a rich embedding that encodes identity features, as well as non-identity ones such as pose and landmark locations. Finally, we propose a new feature reconstruction metric learning to explicitly disentangle identity and pose, by demanding alignment between the feature reconstructions through various combinations of identity and pose features, which is obtained from two images of the same subject. Experiments on both controlled and in-the-wild face datasets, such as MultiPIE, 300WLP and the profile view database CFP, show that our method consistently outperforms the state-of-the-art, especially on images with large head pose variations. Detail results and resource are referred to https://sites.google.com/site/xipengcshomepage/iccv2017

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xi Peng (115 papers)
  2. Xiang Yu (130 papers)
  3. Kihyuk Sohn (54 papers)
  4. Dimitris Metaxas (85 papers)
  5. Manmohan Chandraker (108 papers)
Citations (135)

Summary

We haven't generated a summary for this paper yet.