Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence rate for a Gauss collocation method applied to constrained optimal control

Published 11 Jul 2016 in math.NA | (1607.02798v4)

Abstract: A local convergence rate is established for a Gauss orthogonal collocation method applied to optimal control problems with control constraints. If the Hamiltonian possesses a strong convexity property, then the theory yields convergence for problems whose optimal state and costate possess two square integrable derivatives. The convergence theory is based on a stability result for the sup-norm change in the solution of a variational inequality relative to a 2-norm perturbation, and on a Sobolev space bound for the error in interpolation at the Gauss quadrature points and the additional point -1. The tightness of the convergence theory is examined using a numerical example.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.