Entanglement Entropy and Mutual Information of Circular Entangling Surfaces in 2 + 1-dimensional Quantum Lifshitz Model (1607.01771v1)
Abstract: We investigate the entanglement entropy (EE) of circular entangling cuts in the 2+1-dimensional quantum Lifshitz model, whose ground state wave function is a spatially conformal invariant state of the Rokhsar-Kivelson type, whose weight is the Gibbs weight of 2D Euclidean free boson. We show that the finite subleading corrections of EE to the area-law term as well as the mutual information are conformal invariants and calculate them for cylinder, disk-like and spherical manifolds with various spatial cuts. The subtlety due to the boson compactification in the replica trick is carefully addressed. We find that in the geometry of a punctured plane with many small holes, the constant piece of EE is proportional to the number of holes, indicating the ability of entanglement to detect topological information of the configuration. Finally, we compare the mutual information of two small distant disks with Cardy's relativistic CFT scaling proposal. We find that in the quantum Lifshitz model, the mutual information also scales at long distance with a power determined by the lowest scaling dimension local operator in the theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.