Papers
Topics
Authors
Recent
Search
2000 character limit reached

Essential Constraints of Edge-Constrained Proximity Graphs

Published 5 Jul 2016 in cs.CG | (1607.01294v2)

Abstract: Given a plane forest $F = (V, E)$ of $|V| = n$ points, we find the minimum set $S \subseteq E$ of edges such that the edge-constrained minimum spanning tree over the set $V$ of vertices and the set $S$ of constraints contains $F$. We present an $O(n \log n )$-time algorithm that solves this problem. We generalize this to other proximity graphs in the constraint setting, such as the relative neighbourhood graph, Gabriel graph, $\beta$-skeleton and Delaunay triangulation. We present an algorithm that identifies the minimum set $S\subseteq E$ of edges of a given plane graph $I=(V,E)$ such that $I \subseteq CG_\beta(V, S)$ for $1 \leq \beta \leq 2$, where $CG_\beta(V, S)$ is the constraint $\beta$-skeleton over the set $V$ of vertices and the set $S$ of constraints. The running time of our algorithm is $O(n)$, provided that the constrained Delaunay triangulation of $I$ is given.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.