Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facial Expression Classification Using Rotation Slepian-based Moment Invariants (1607.01040v1)

Published 28 Jun 2016 in cs.CV

Abstract: Rotation moment invariants have been of great interest in image processing and pattern recognition. This paper presents a novel kind of rotation moment invariants based on the Slepian functions, which were originally introduced in the method of separation of variables for Helmholtz equations. They were first proposed for time series by Slepian and his coworkers in the 1960s. Recent studies have shown that these functions have an good performance in local approximation compared to other approximation basis. Motivated by the good approximation performance, we construct the Slepian-based moments and derive the rotation invariant. We not only theoretically prove the invariance, but also discuss the experiments on real data. The proposed rotation invariants are robust to noise and yield decent performance in facial expression classification.

Summary

We haven't generated a summary for this paper yet.