Preparational Uncertainty Relations for $N$ Continuous Variables (1606.09148v2)
Abstract: A smooth function of the second moments of $N$ continuous variables gives rise to an uncertainty relation if it is bounded from below. We present a method to systematically derive such bounds by generalizing an approach applied previously to a single continuous variable. New uncertainty relations are obtained for multi-partite systems which allow one to distinguish entangled from separable states. We also investigate the geometry of the "uncertainty region" in the $N(2N+1)$-dimensional space of moments. It is shown to be a convex set for any number continuous variables, and the points on its boundary found to be in one-to-one correspondence with pure Gaussian states of minimal uncertainty. For a single degree of freedom, the boundary can be visualized as one sheet of a "Lorentz-invariant" hyperboloid in the three-dimensional pace of second moments.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.