Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Projective linear groups as automorphism groups of chiral polytopes (1606.08017v1)

Published 26 Jun 2016 in math.GR and math.CO

Abstract: It is already known that the automorphism group of a chiral polyhedron is never isomorphic to $PSL(2,q)$ or $PGL(2,q)$ for any prime power $q$. In this paper, we show that $PSL(2,q)$ and $PGL(2,q)$ are never automorphism groups of chiral polytopes of rank at least $5$. Moreover, we show that $PGL(2,q)$ is the automorphism group of at least one chiral polytope of rank $4$ for every $q\geq5$. Finally, we determine for which values of $q$ the group $PSL(2,q)$ is the automorphism group of a chiral polytope of rank $4$, except when $q=pd\equiv3\pmod{4}$ where $d>1$ is not a prime power, in which case the problem remains unsolved.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.