Papers
Topics
Authors
Recent
2000 character limit reached

Analytics-as-a-Service in a Multi-Cloud Environment through Semantically enabled Hierarchical Data Processing

Published 25 Jun 2016 in cs.NI | (1606.07935v1)

Abstract: A large number of cloud middleware platforms and tools are deployed to support a variety of Internet of Things (IoT) data analytics tasks. It is a common practice that such cloud platforms are only used by its owners to achieve their primary and predefined objectives, where raw and processed data are only consumed by them. However, allowing third parties to access processed data to achieve their own objectives significantly increases integration, cooperation, and can also lead to innovative use of the data. Multicloud, privacy-aware environments facilitate such data access, allowing different parties to share processed data to reduce computation resource consumption collectively. However, there are interoperability issues in such environments that involve heterogeneous data and analytics-as-a-service providers. There is a lack of both - architectural blueprints that can support such diverse, multi-cloud environments, and corresponding empirical studies that show feasibility of such architectures. In this paper, we have outlined an innovative hierarchical data processing architecture that utilises semantics at all the levels of IoT stack in multicloud environments. We demonstrate the feasibility of such architecture by building a system based on this architecture using OpenIoT as a middleware, and Google Cloud and Microsoft Azure as cloud environments. The evaluation shows that the system is scalable and has no significant limitations or overheads.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.