Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mixing times of random walks on dynamic configuration models (1606.07639v3)

Published 24 Jun 2016 in math.PR

Abstract: The mixing time of a random walk, with or without backtracking, on a random graph generated according to the configuration model on $n$ vertices, is known to be of order $\log n$. In this paper we investigate what happens when the random graph becomes {\em dynamic}, namely, at each unit of time a fraction $\alpha_n$ of the edges is randomly rewired. Under mild conditions on the degree sequence, guaranteeing that the graph is locally tree-like, we show that for every $\varepsilon\in(0,1)$ the $\varepsilon$-mixing time of random walk without backtracking grows like $\sqrt{2\log(1/\varepsilon)/\log(1/(1-\alpha_n))}$ as $n \to \infty$, provided that $\lim_{n\to\infty} \alpha_n(\log n)2=\infty$. The latter condition corresponds to a regime of fast enough graph dynamics. Our proof is based on a randomised stopping time argument, in combination with coupling techniques and combinatorial estimates. The stopping time of interest is the first time that the walk moves along an edge that was rewired before, which turns out to be close to a strong stationary time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.