Papers
Topics
Authors
Recent
2000 character limit reached

NN-grams: Unifying neural network and n-gram language models for Speech Recognition (1606.07470v1)

Published 23 Jun 2016 in cs.CL and stat.ML

Abstract: We present NN-grams, a novel, hybrid LLM integrating n-grams and neural networks (NN) for speech recognition. The model takes as input both word histories as well as n-gram counts. Thus, it combines the memorization capacity and scalability of an n-gram model with the generalization ability of neural networks. We report experiments where the model is trained on 26B words. NN-grams are efficient at run-time since they do not include an output soft-max layer. The model is trained using noise contrastive estimation (NCE), an approach that transforms the estimation problem of neural networks into one of binary classification between data samples and noise samples. We present results with noise samples derived from either an n-gram distribution or from speech recognition lattices. NN-grams outperforms an n-gram model on an Italian speech recognition dictation task.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube