Papers
Topics
Authors
Recent
Search
2000 character limit reached

Constructing and proving the ground state of a generalized Ising model by the cluster tree optimization algorithm

Published 23 Jun 2016 in cond-mat.stat-mech, cond-mat.dis-nn, and physics.comp-ph | (1606.07429v1)

Abstract: Generalized Ising models, also known as cluster expansions, are an important tool in many areas of condensed-matter physics and materials science, as they are often used in the study of lattice thermodynamics, solid-solid phase transitions, magnetic and thermal properties of solids, and fluid mechanics. However, the problem of finding the global ground state of generalized Ising model has remained unresolved, with only a limited number of results for simple systems known. We propose a method to efficiently find the periodic ground state of a generalized Ising model of arbitrary complexity by a new algorithm which we term cluster tree optimization. Importantly, we are able to show that even in the case of an aperiodic ground state, our algorithm produces a sequence of states with energy converging to the true ground state energy, with a provable bound on error. Compared to the current state-of-the-art polytope method, this algorithm eliminates the necessity of introducing an exponential number of variables to counter frustration, and thus significantly improves tractability. We believe that the cluster tree algorithm offers an intuitive and efficient approach to finding and proving ground states of generalized Ising Hamiltonians of arbitrary complexity, which will help validate assumptions regarding local vs. global optimality in lattice models, as well as offer insights into the low-energy behavior of highly frustrated systems.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.