Papers
Topics
Authors
Recent
2000 character limit reached

Identifying the Academic Rising Stars

Published 18 Jun 2016 in cs.DL | (1606.05752v1)

Abstract: Predicting the fast-rising young researchers (Academic Rising Stars) in the future provides useful guidance to the research community, e.g., offering competitive candidates to university for young faculty hiring as they are expected to have success academic careers. In this work, given a set of young researchers who have published the first first-author paper recently, we solve the problem of how to effectively predict the top k% researchers who achieve the highest citation increment in \Delta t years. We explore a series of factors that can drive an author to be fast-rising and design a novel impact increment ranking learning (IIRL) algorithm that leverages those factors to predict the academic rising stars. Experimental results on the large ArnetMiner dataset with over 1.7 million authors demonstrate the effectiveness of IIRL. Specifically, it outperforms all given benchmark methods, with over 8% average improvement. Further analysis demonstrates that the prediction models for different research topics follow the similar pattern. We also find that temporal features are the best indicators for rising stars prediction, while venue features are less relevant.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.