Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bio-Inspired Resource Allocation for Relay-Aided Device-to-Device Communications (1606.04849v1)

Published 15 Jun 2016 in cs.NI

Abstract: The Device-to-Device (D2D) communication principle is a key enabler of direct localized communication between mobile nodes and is expected to propel a plethora of novel multimedia services. However, even though it offers a wide set of capabilities mainly due to the proximity and resource reuse gains, interference must be carefully controlled to maximize the achievable rate for coexisting cellular and D2D users. The scope of this work is to provide an interference-aware real-time resource allocation (RA) framework for relay-aided D2D communications that underlay cellular networks. The main objective is to maximize the overall network throughput by guaranteeing a minimum rate threshold for cellular and D2D links. To this direction, genetic algorithms (GAs) are proven to be powerful and versatile methodologies that account for not only enhanced performance but also reduced computational complexity in emerging wireless networks. Numerical investigations highlight the performance gains compared to baseline RA methods and especially in highly dense scenarios which will be the case in future 5G networks.

Citations (11)

Summary

We haven't generated a summary for this paper yet.