Comparison of Gelfand-Tsetlin Bases for Alternating and Symmetric Groups (1606.04424v2)
Abstract: Young's orthogonal basis is a classical basis for an irreducible representation of a symmetric group. This basis happens to be a Gelfand-Tsetlin basis for the chain of symmetric groups. It is well-known that the chain of alternating groups, just like the chain of symmetric groups, has multiplicity-free restrictions for irreducible representations. Therefore each irreducible representation of an alternating group also admits Gelfand-Tsetlin bases. Moreover, each such representation is either the restriction of, or a subrepresentation of, the restriction of an irreducible representation of a symmetric group. In this article, we describe a recursive algorithm to write down the expansion of each Gelfand-Tsetlin basis vector for an irreducible representation of an alternating group in terms of Young's orthogonal basis of the ambient representation of the symmetric group. This algorithm is implemented with the Sage Mathematical Software.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.