Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Comparison of Gelfand-Tsetlin Bases for Alternating and Symmetric Groups (1606.04424v2)

Published 14 Jun 2016 in math.RT

Abstract: Young's orthogonal basis is a classical basis for an irreducible representation of a symmetric group. This basis happens to be a Gelfand-Tsetlin basis for the chain of symmetric groups. It is well-known that the chain of alternating groups, just like the chain of symmetric groups, has multiplicity-free restrictions for irreducible representations. Therefore each irreducible representation of an alternating group also admits Gelfand-Tsetlin bases. Moreover, each such representation is either the restriction of, or a subrepresentation of, the restriction of an irreducible representation of a symmetric group. In this article, we describe a recursive algorithm to write down the expansion of each Gelfand-Tsetlin basis vector for an irreducible representation of an alternating group in terms of Young's orthogonal basis of the ambient representation of the symmetric group. This algorithm is implemented with the Sage Mathematical Software.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.