Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 152 tok/s Pro
GPT OSS 120B 325 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Forward Modeling of Large-Scale Structure: An open-source approach with Halotools (1606.04106v2)

Published 13 Jun 2016 in astro-ph.IM, astro-ph.CO, and astro-ph.GA

Abstract: We present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution (HOD), the conditional luminosity function (CLF), abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos, or to follow custom number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. The package has an optimized toolkit to make mock observations on a synthetic galaxy population, including galaxy clustering, galaxy-galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others, allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation. Halotools has an automated testing suite and is exhaustively documented on http://halotools.readthedocs.io, which includes quickstart guides, source code notes and a large collection of tutorials. The documentation is effectively an online textbook on how to build and study empirical models of galaxy formation with Python.

Citations (97)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube