Papers
Topics
Authors
Recent
Search
2000 character limit reached

A functional calculus for the magnetization dynamics

Published 7 Jun 2016 in cond-mat.stat-mech, cond-mat.mtrl-sci, hep-lat, nlin.CD, and physics.comp-ph | (1606.02137v1)

Abstract: A functional calculus approach is applied to the derivation of evolution equations for the moments of the magnetization dynamics of systems subject to stochastic fields. It allows us to derive a general framework for obtaining the master equation for the stochastic magnetization dynamics, that is applied to both, Markovian and non-Markovian dynamics. The formalism is applied for studying different kinds of interactions, that are of practical relevance and hierarchies of evolution equations for the moments of the distribution of the magnetization are obtained. In each case, assumptions are spelled out, in order to close the hierarchies. These closure assumptions are tested by extensive numerical studies, that probe the validity of Gaussian or non--Gaussian closure Ans\"atze.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.