Quantized Weyl algebras at roots of unity
Abstract: We classify the centers of the quantized Weyl algebras that are PI and derive explicit formulas for the discriminants of these algebras over a general class of polynomial central subalgebras. Two different approaches to these formulas are given: one based on Poisson geometry and deformation theory, and the other using techniques from quantum cluster algebras. Furthermore, we classify the PI quantized Weyl algebras that are free over their centers and prove that their discriminants are locally dominating and effective. This is applied to solve the automorphism and isomorphism problems for this family of algebras and their tensor products.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.