Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A new type of sharp bounds for ratios of modified Bessel functions (1606.02008v1)

Published 7 Jun 2016 in math.CA

Abstract: The bounds for the ratios of first and second kind modified Bessel functions of consecutive orders are important quantities appearing in a large number of scientific applications. We obtain new bounds which are accurate in a large region of parameters and which are shaper than previous bounds. The new bounds are obtained by a qualitative analysis of the Riccati equation satisfied by these ratios. A procedure is considered in which the bounds obtained from the analysis of the Riccati equation are used to define a new function satisfying a new Riccati equation which yields sharper bounds. Similar ideas can be applied to other functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.