A new type of sharp bounds for ratios of modified Bessel functions (1606.02008v1)
Abstract: The bounds for the ratios of first and second kind modified Bessel functions of consecutive orders are important quantities appearing in a large number of scientific applications. We obtain new bounds which are accurate in a large region of parameters and which are shaper than previous bounds. The new bounds are obtained by a qualitative analysis of the Riccati equation satisfied by these ratios. A procedure is considered in which the bounds obtained from the analysis of the Riccati equation are used to define a new function satisfying a new Riccati equation which yields sharper bounds. Similar ideas can be applied to other functions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.