Papers
Topics
Authors
Recent
2000 character limit reached

Design of Robust Adaptive Beamforming Algorithms Based on Low-Rank and Cross-Correlation Techniques

Published 4 Jun 2016 in cs.CE, cs.IT, and math.IT | (1606.01313v1)

Abstract: This work presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Firstly, we construct a general linear equation considered in large dimensions whose solution yields the steering vector mismatch. Then, we employ the idea of the full orthogonalization method (FOM), an orthogonal Krylov subspace based method, to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method. We also devise adaptive algorithms based on stochastic gradient (SG) and conjugate gradient (CG) techniques to update the beamforming weights with low complexity and avoid any costly matrix inversion. The main advantages of the proposed low-rank and mismatch estimation techniques are their cost-effectiveness when dealing with high dimension subspaces or large sensor arrays. Simulations results show excellent performance in terms of the output signal-to-interference-plus-noise ratio (SINR) of the beamformer among all the compared RAB methods.

Citations (123)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.