Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gaussian Processes for Music Audio Modelling and Content Analysis

Published 3 Jun 2016 in stat.ML and cs.SD | (1606.01039v2)

Abstract: Real music signals are highly variable, yet they have strong statistical structure. Prior information about the underlying physical mechanisms by which sounds are generated and rules by which complex sound structure is constructed (notes, chords, a complete musical score), can be naturally unified using Bayesian modelling techniques. Typically algorithms for Automatic Music Transcription independently carry out individual tasks such as multiple-F0 detection and beat tracking. The challenge remains to perform joint estimation of all parameters. We present a Bayesian approach for modelling music audio, and content analysis. The proposed methodology based on Gaussian processes seeks joint estimation of multiple music concepts by incorporating into the kernel prior information about non-stationary behaviour, dynamics, and rich spectral content present in the modelled music signal. We illustrate the benefits of this approach via two tasks: pitch estimation, and inferring missing segments in a polyphonic audio recording.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.