Type-II singularities of two-convex immersed mean curvature flow (1605.09609v1)
Abstract: We show that any strictly mean convex translator of dimension $n\geq 3$ which admits a cylindrical estimate and a corresponding gradient estimate is rotationally symmetric. As a consequence, we deduce that any translating solution of the mean curvature flow which arises as a blow-up limit of a two-convex mean curvature flow of compact immersed hypersurfaces of dimension $n\geq 3$ is rotationally symmetric. The proof is rather robust, and applies to a more general class of translator equations. As a particular application, we prove an analogous result for a class of flows of embedded hypersurfaces which includes the flow of two-convex hypersurfaces by the two-harmonic mean curvature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.