Caching Improvement Using Adaptive User Clustering
Abstract: In this article we explore one of the most promising technologies for 5G wireless networks using an underlay small cell network, namely proactive caching. Using the increase in storage technologies and through studying the users behavior, peak traffic can be reduced through proactive caching of the content that is most probable to be requested. We propose a new method, in which, instead of caching the most popular content, the users within the network are clustered according to their content popularity and the caching is done accordingly. We present also a method for estimating the number of clusters within the network based on the Akaike information criterion. We analytically derive a closed form expression of the hit probability and we propose an optimization problem in which the small base stations association with clusters is optimized.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.