Controlling the joint local false discovery rate is more powerful than meta-analysis methods in joint analysis of summary statistics from multiple genome-wide association studies (1605.08887v1)
Abstract: In genome-wide association studies (GWASs) of common diseases/traits, we often analyze multiple GWASs with the same phenotype together to discover associated genetic variants with higher power. Since it is difficult to access data with detailed individual measurements, summary-statistics-based meta-analysis methods have become popular to jointly analyze data sets from multiple GWASs. In this paper, we propose a novel summary-statistics-based joint analysis method based on controlling the joint local false discovery rate (Jlfdr). We prove that our method is the most powerful summary-statistics-based joint analysis method when controlling the false discovery rate at a certain level. In particular, the Jlfdr-based method achieves higher power than commonly used meta-analysis methods when analyzing heterogeneous data sets from multiple GWASs. Simulation experiments demonstrate the superior power of our method over meta-analysis methods. Also, our method discovers more associations than meta-analysis methods from empirical data sets of four phenotypes. The R-package is available at: http://bioinformatics.ust.hk/Jlfdr.html.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.