On Superalgebras of Matrices with Symmetry Properties (1605.08615v1)
Abstract: It is known that semi-magic square matrices form a 2-graded algebra or superalgebra with the even and odd subspaces under centre-point reflection symmetry as the two components. We show that other symmetries which have been studied for square matrices give rise to similar superalgebra structures, pointing to novel symmetry types in their complementary parts. In particular, this provides a unifying framework for the composite most perfect square' symmetry and the related class of
reversible squares'; moreover, the semi-magic square algebra is identified as part of a 2-gradation of the general square matrix algebra. We derive explicit representation formulae for matrices of all symmetry types considered, which can be used to construct all such matrices.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.