Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Estimates of oscillatory integrals with stationary phase and singular amplitude: Applications to propagation features for dispersive equations (1605.06250v2)

Published 20 May 2016 in math.AP

Abstract: In this paper, we study time-asymptotic propagation phenomena for a class of dispersive equations on the line by exploiting precise estimates of oscillatory integrals. We propose first an extension of the van der Corput Lemma to the case of phases which may have a stationary point of real order and amplitudes allowed to have an integrable singular point. The resulting estimates provide optimal decay rates which show explicitly the influence of these two particular points. Then we apply these abstract results to solution formulas of a class of dispersive equations on the line defined by Fourier multipliers. Under the hypothesis that the Fourier transform of the initial data has a compact support or an integrable singular point, we derive uniform estimates of the solutions in space-time cones, describing their motions when the time tends to infinity. The method permits also to show that symbols having a restricted growth at infinity may influence the dispersion of the solutions: we prove the existence of a cone, depending only on the symbol, in which the solution is time-asymptotically localized. This corresponds to an asymptotic version of the notion of causality for initial data without compact support.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube