Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable low dimensional manifold model in the reconstruction of noisy and incomplete hyperspectral images (1605.05652v2)

Published 18 May 2016 in cs.CV, cs.IT, and math.IT

Abstract: We present a scalable low dimensional manifold model for the reconstruction of noisy and incomplete hyperspectral images. The model is based on the observation that the spatial-spectral blocks of a hyperspectral image typically lie close to a collection of low dimensional manifolds. To emphasize this, the dimension of the manifold is directly used as a regularizer in a variational functional, which is solved efficiently by alternating direction of minimization and weighted nonlocal Laplacian. Unlike general 3D images, the same similarity matrix can be shared across all spectral bands for a hyperspectral image, therefore the resulting algorithm is much more scalable than that for general 3D data. Numerical experiments on the reconstruction of hyperspectral images from sparse and noisy sampling demonstrate the superiority of our proposed algorithm in terms of both speed and accuracy.

Citations (5)

Summary

We haven't generated a summary for this paper yet.