Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scalable low dimensional manifold model in the reconstruction of noisy and incomplete hyperspectral images

Published 18 May 2016 in cs.CV, cs.IT, and math.IT | (1605.05652v2)

Abstract: We present a scalable low dimensional manifold model for the reconstruction of noisy and incomplete hyperspectral images. The model is based on the observation that the spatial-spectral blocks of a hyperspectral image typically lie close to a collection of low dimensional manifolds. To emphasize this, the dimension of the manifold is directly used as a regularizer in a variational functional, which is solved efficiently by alternating direction of minimization and weighted nonlocal Laplacian. Unlike general 3D images, the same similarity matrix can be shared across all spectral bands for a hyperspectral image, therefore the resulting algorithm is much more scalable than that for general 3D data. Numerical experiments on the reconstruction of hyperspectral images from sparse and noisy sampling demonstrate the superiority of our proposed algorithm in terms of both speed and accuracy.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.