Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation
Abstract: The main shortage of principle component analysis (PCA) based anomaly detection models is their interpretability. In this paper, our goal is to propose an interpretable PCA-based model for anomaly detection and interpretation. The propose ASPCA model constructs principal components with sparse and orthogonal loading vectors to represent the abnormal subspace, and uses them to interpret detected anomalies. Our experiments on a synthetic dataset and two real world datasets showed that the proposed ASPCA models achieved comparable detection accuracies as the PCA model, and can provide interpretations for individual anomalies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.