The eigenvalues of the sample covariance matrix of a multivariate heavy-tailed stochastic volatility model
Abstract: We consider a multivariate heavy-tailed stochastic volatility model and analyze the large-sample behavior of its sample covariance matrix. We study the limiting behavior of its entries in the infinite-variance case and derive results for the ordered eigenvalues and corresponding eigenvectors. Essentially, we consider two different cases where the tail behavior either stems from the i.i.d. innovations of the process or from its volatility sequence. In both cases, we make use of a large deviations technique for regularly varying time series to derive multivariate $\alpha$-stable limit distributions of the sample covariance matrix. While we show that in the case of heavy-tailed innovations the limiting behavior resembles that of completely independent observations, we also derive that in the case of a heavy-tailed volatility sequence the possible limiting behavior is more diverse, i.e. allowing for dependencies in the limiting distributions which are determined by the structure of the underlying volatility sequence.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.