2000 character limit reached
Randomized Kaczmarz for Rank Aggregation from Pairwise Comparisons (1605.02470v1)
Published 9 May 2016 in cs.LG and stat.ML
Abstract: We revisit the problem of inferring the overall ranking among entities in the framework of Bradley-Terry-Luce (BTL) model, based on available empirical data on pairwise preferences. By a simple transformation, we can cast the problem as that of solving a noisy linear system, for which a ready algorithm is available in the form of the randomized Kaczmarz method. This scheme is provably convergent, has excellent empirical performance, and is amenable to on-line, distributed and asynchronous variants. Convergence, convergence rate, and error analysis of the proposed algorithm are presented and several numerical experiments are conducted whose results validate our theoretical findings.