Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Joint Sound Source Separation and Speaker Recognition (1604.08852v1)

Published 29 Apr 2016 in cs.SD and cs.LG

Abstract: Non-negative Matrix Factorization (NMF) has already been applied to learn speaker characterizations from single or non-simultaneous speech for speaker recognition applications. It is also known for its good performance in (blind) source separation for simultaneous speech. This paper explains how NMF can be used to jointly solve the two problems in a multichannel speaker recognizer for simultaneous speech. It is shown how state-of-the-art multichannel NMF for blind source separation can be easily extended to incorporate speaker recognition. Experiments on the CHiME corpus show that this method outperforms the sequential approach of first applying source separation, followed by speaker recognition that uses state-of-the-art i-vector techniques.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.