Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Separation of Moving Sound Sources Using Multichannel NMF and Acoustic Tracking (1710.10005v1)

Published 27 Oct 2017 in cs.SD and eess.AS

Abstract: In this paper we propose a method for separation of moving sound sources. The method is based on first tracking the sources and then estimation of source spectrograms using multichannel non-negative matrix factorization (NMF) and extracting the sources from the mixture by single-channel Wiener filtering. We propose a novel multichannel NMF model with time-varying mixing of the sources denoted by spatial covariance matrices (SCM) and provide update equations for optimizing model parameters minimizing squared Frobenius norm. The SCMs of the model are obtained based on estimated directions of arrival of tracked sources at each time frame. The evaluation is based on established objective separation criteria and using real recordings of two and three simultaneous moving sound sources. The compared methods include conventional beamforming and ideal ratio mask separation. The proposed method is shown to exceed the separation quality of other evaluated blind approaches according to all measured quantities. Additionally, we evaluate the method's susceptibility towards tracking errors by comparing the separation quality achieved using annotated ground truth source trajectories.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Joonas Nikunen (3 papers)
  2. Aleksandr Diment (1 paper)
  3. Tuomas Virtanen (112 papers)
Citations (43)

Summary

We haven't generated a summary for this paper yet.