Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hilbert Exclusion: Improved Metric Search through Finite Isometric Embeddings

Published 28 Apr 2016 in cs.IR | (1604.08640v1)

Abstract: Most research into similarity search in metric spaces relies upon the triangle inequality property. This property allows the space to be arranged according to relative distances to avoid searching some subspaces. We show that many common metric spaces, notably including those using Euclidean and Jensen-Shannon distances, also have a stronger property, sometimes called the four-point property: in essence, these spaces allow an isometric embedding of any four points in three-dimensional Euclidean space, as well as any three points in two-dimensional Euclidean space. In fact, we show that any space which is isometrically embeddable in Hilbert space has the stronger property. This property gives stronger geometric guarantees, and one in particular, which we name the Hilbert Exclusion property, allows any indexing mechanism which uses hyperplane partitioning to perform better. One outcome of this observation is that a number of state-of-the-art indexing mechanisms over high dimensional spaces can be easily extended to give a significant increase in performance; furthermore, the improvement given is greater in higher dimensions. This therefore leads to a significant improvement in the cost of metric search in these spaces.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.