Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Equivariant Gröbner bases of symmetric toric ideals (1604.08517v1)

Published 28 Apr 2016 in math.AC

Abstract: It has been shown previously that a large class of monomial maps equivariant under the action of an infinite symmetric group have finitely generated kernels up to the symmetric action. We prove that these symmetric toric ideals also have finite Gr\"obner bases up to symmetry for certain monomial orders. An algorithm is presented for computing equivariant Gr\"obner bases that terminates whenever a finite basis exists, improving on previous algorithms that only guaranteed termination in rings Noetherian up to symmetry. This algorithm can be used to compute equivariant Gr\"obner bases of the above toric ideals, given the monomial map.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.