Weakly discontinuous and resolvable functions between topological spaces (1604.07522v3)
Abstract: We prove that a function $f:X\to Y$ from a first-countable (more generally, Preiss-Simon) space $X$ to a regular space $Y$ is weakly discontinuous (which means that every subspace $A\subset X$ contains an open dense subset $U\subset A$ such that $f|U$ is continuous) if and only if $f$ is open-resolvable (in the sense that for every open subset $U\subset Y$ the preimage $f{-1}(U)$ is a resolvable subset of $X$) if and only if $f$ is resolvable (in the sense that for every resolvable subset $R\subset Y$ the preimage $f{-1}(R)$ is a resolvable subset of $X$). For functions on metrizable spaces this characterization was announced (without proof) by Vinokurov in 1985.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.