Rigidity of critical points for a nonlocal Ohta-Kawasaki energy (1604.07219v1)
Abstract: We investigate the shape of critical points for a free energy consisting of a nonlocal perimeter plus a nonlocal repulsive term. In particular, we prove that a volume-constrained critical point is necessarily a ball if its volume is sufficiently small with respect to its isodiametric ratio, thus extending a result previously known only for global minimizers. We also show that, at least in one-dimension, there exist critical points with arbitrarily small volume and large isodiametric ratio. This example shows that a constraint on the diameter is, in general, necessary to establish the radial symmetry of the critical points.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.