Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Reduced Reference Parametric Models for Estimating Audiovisual Quality in Multimedia Services (1604.07211v1)

Published 25 Apr 2016 in cs.MM and cs.LG

Abstract: We have developed reduced reference parametric models for estimating perceived quality in audiovisual multimedia services. We have created 144 unique configurations for audiovisual content including various application and network parameters such as bitrates and distortions in terms of bandwidth, packet loss rate and jitter. To generate the data needed for model training and validation we have tasked 24 subjects, in a controlled environment, to rate the overall audiovisual quality on the absolute category rating (ACR) 5-level quality scale. We have developed models using Random Forest and Neural Network based machine learning methods in order to estimate Mean Opinion Scores (MOS) values. We have used information retrieved from the packet headers and side information provided as network parameters for model training. Random Forest based models have performed better in terms of Root Mean Square Error (RMSE) and Pearson correlation coefficient. The side information proved to be very effective in developing the model. We have found that, while the model performance might be improved by replacing the side information with more accurate bit stream level measurements, they are performing well in estimating perceived quality in audiovisual multimedia services.

Citations (18)

Summary

We haven't generated a summary for this paper yet.