Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Quantitative Volume Space Form Rigidity Under Lower Ricci Curvature Bound (1604.06986v3)

Published 24 Apr 2016 in math.DG

Abstract: Let $M$ be a compact $n$-manifold of $\operatorname{Ric}M\ge (n-1)H$ ($H$ is a constant). We are concerned with the following space form rigidity: $M$ is isometric to a space form of constant curvature $H$ under either of the following conditions: (i) There is $\rho>0$ such that for any $x\in M$, the open $\rho$-ball at $x*$ in the (local) Riemannian universal covering space, $(U*\rho,x*)\to (B_\rho(x),x)$, has the maximal volume i.e., the volume of a $\rho$-ball in the simply connected $n$-space form of curvature $H$. (ii) For $H=-1$, the volume entropy of $M$ is maximal i.e. $n-1$ ([LW1]). The main results of this paper are quantitative space form rigidity i.e., statements that $M$ is diffeomorphic and close in the Gromov-Hausdorff topology to a space form of constant curvature $H$, if $M$ almost satisfies, under some additional condition, the above maximal volume condition. For $H=1$, the quantitative spherical space form rigidity improves and generalizes the diffeomorphic sphere theorem in [CC2].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.