Universal asymptotic clone size distribution for general population growth (1604.04936v2)
Abstract: Deterministically growing (wild-type) populations which seed stochastically developing mutant clones have found an expanding number of applications from microbial populations to cancer. The special case of exponential wild-type population growth, usually termed the Luria-Delbr\"uck or Lea-Coulson model, is often assumed but seldom realistic. In this article we generalise this model to different types of wild-type population growth, with mutants evolving as a birth-death branching process. Our focus is on the size distribution of clones - that is the number of progeny of a founder mutant - which can be mapped to the total number of mutants. Exact expressions are derived for exponential, power-law and logistic population growth. Additionally for a large class of population growth we prove that the long time limit of the clone size distribution has a general two-parameter form, whose tail decays as a power-law. Considering metastases in cancer as the mutant clones, upon analysing a data-set of their size distribution, we indeed find that a power-law tail is more likely than an exponential one.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.