Papers
Topics
Authors
Recent
2000 character limit reached

SSP: Semantic Space Projection for Knowledge Graph Embedding with Text Descriptions

Published 17 Apr 2016 in cs.CL and cs.LG | (1604.04835v3)

Abstract: Knowledge representation is an important, long-history topic in AI, and there have been a large amount of work for knowledge graph embedding which projects symbolic entities and relations into low-dimensional, real-valued vector space. However, most embedding methods merely concentrate on data fitting and ignore the explicit semantic expression, leading to uninterpretable representations. Thus, traditional embedding methods have limited potentials for many applications such as question answering, and entity classification. To this end, this paper proposes a semantic representation method for knowledge graph \textbf{(KSR)}, which imposes a two-level hierarchical generative process that globally extracts many aspects and then locally assigns a specific category in each aspect for every triple. Since both aspects and categories are semantics-relevant, the collection of categories in each aspect is treated as the semantic representation of this triple. Extensive experiments justify our model outperforms other state-of-the-art baselines substantially.

Citations (186)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.