Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiuser Resource Allocation for Mobile-Edge Computation Offloading (1604.02519v1)

Published 9 Apr 2016 in cs.IT and math.IT

Abstract: Mobile-edge computation offloading (MECO) offloads intensive mobile computation to clouds located at the edges of cellular networks. Thereby, MECO is envisioned as a promising technique for prolonging the battery lives and enhancing the computation capacities of mobiles. In this paper, we consider resource allocation in a MECO system comprising multiple users that time share a single edge cloud and have different computation loads. The optimal resource allocation is formulated as a convex optimization problem for minimizing the weighted sum mobile energy consumption under constraint on computation latency and for both the cases of infinite and finite edge cloud computation capacities. The optimal policy is proved to have a threshold-based structure with respect to a derived offloading priority function, which yields priorities for users according to their channel gains and local computing energy consumption. As a result, users with priorities above and below a given threshold perform complete and minimum offloading, respectively. Computing the threshold requires iterative computation. To reduce the complexity, a sub-optimal resource-allocation algorithm is proposed and shown by simulation to have close-to-optimal performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Changsheng You (92 papers)
  2. Kaibin Huang (186 papers)
Citations (98)

Summary

We haven't generated a summary for this paper yet.