Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

CopulaDTA: An R Package for Copula Based Bivariate Beta-Binomial Models for Diagnostic Test Accuracy Studies in a Bayesian Framework (1604.01996v1)

Published 7 Apr 2016 in stat.ME

Abstract: The current statistical procedures implemented in statistical software packages for pooling of diagnostic test accuracy data include hSROC regression and the bivariate random-effects meta-analysis model (BRMA). However, these models do not report the overall mean but rather the mean for a central study with random-effect equal to zero and have difficulties estimating the correlation between sensitivity and specificity when the number of studies in the meta-analysis is small and/or when the between-study variance is relatively large. This tutorial on advanced statistical methods for meta-analysis of diagnostic accuracy studies discusses and demonstrates Bayesian modeling using CopulaDTA package in R to fit different models to obtain the meta-analytic parameter estimates. The focus is on the joint modelling of sensitivity and specificity using copula based bivariate beta distribution. Essentially, we extend the work of Nikoloulopoulos by: i) presenting the Bayesian approach which offers flexibility and ability to perform complex statistical modelling even with small data sets and ii) including covariate information, and iii) providing an easy to use code. The statistical methods are illustrated by re-analysing data of two published meta-analyses. Modelling sensitivity and specificity using the bivariate beta distribution provides marginal as well as study-specific parameter estimates as opposed to using bivariate normal distribution (e.g., in BRMA) which only yields study-specific parameter estimates. Moreover, copula based models offer greater flexibility in modelling different correlation structures in contrast to the normal distribution which allows for only one correlation structure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.