Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics vs quantum approaches (1604.01746v2)

Published 6 Apr 2016 in quant-ph and cond-mat.dis-nn

Abstract: To date, a conclusive detection of quantum speedup remains elusive. Recently, a team by Google Inc.~[V.~S.~Denchev {\em et al}., Phys.~Rev.~X {\bf 6}, 031015 (2016)] proposed a weak-strong cluster model tailored to have tall and narrow energy barriers separating local minima, with the aim to highlight the value of finite-range tunneling. More precisely, results from quantum Monte Carlo simulations, as well as the D-Wave 2X quantum annealer scale considerably better than state-of-the-art simulated annealing simulations. Moreover, the D-Wave 2X quantum annealer is $\sim 108$ times faster than simulated annealing on conventional computer hardware for problems with approximately $103$ variables. Here, an overview of different sequential, nontailored, as well as specialized tailored algorithms on the Google instances is given. We show that the quantum speedup is limited to sequential approaches and study the typical complexity of the benchmark problems using insights from the study of spin glasses.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.