Papers
Topics
Authors
Recent
2000 character limit reached

Learning A Deep $\ell_\infty$ Encoder for Hashing

Published 6 Apr 2016 in cs.LG and cs.CV | (1604.01475v1)

Abstract: We investigate the $\ell_\infty$-constrained representation which demonstrates robustness to quantization errors, utilizing the tool of deep learning. Based on the Alternating Direction Method of Multipliers (ADMM), we formulate the original convex minimization problem as a feed-forward neural network, named \textit{Deep $\ell_\infty$ Encoder}, by introducing the novel Bounded Linear Unit (BLU) neuron and modeling the Lagrange multipliers as network biases. Such a structural prior acts as an effective network regularization, and facilitates the model initialization. We then investigate the effective use of the proposed model in the application of hashing, by coupling the proposed encoders under a supervised pairwise loss, to develop a \textit{Deep Siamese $\ell_\infty$ Network}, which can be optimized from end to end. Extensive experiments demonstrate the impressive performances of the proposed model. We also provide an in-depth analysis of its behaviors against the competitors.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.